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Abstract—An approach to the benzylidene biphenol key component of blepharismins, photoreceptor pigments isolated from
Blepharisma japonicum, is reported. This method relies on an efficient TfOH-catalyzed condensation of phenols with aromatic
aldehydes in EtOH as a solvent at 3 kbar pressure. © 2001 Elsevier Science Ltd. All rights reserved.

Blepharismins 1–5 (1–5), which have recently been iso-
lated from the protozoan Blepharisma japonicum, are
pink-colored pigments that represent a new structural
class of natural products.2 Not only do blepharismins
act as photosensors responsible for the photobehavior
of that unicellular organism, they also exhibit a variety
of biological activities including anti-retroviral activity.3

Over the past few years we have been very interested in
discovering their mode of action at a molecular level.
However, the limited quantities of blepharismins avail-
able from natural sources prompted us to try to synthe-
size these molecules.4

Structurally, blepharismins can be classified into natu-
rally occurring polycyclic quinones, like hypericin and
stentorin,5 and can be divided into three discrete com-

ponents: a perylenequinone structure, an anthraquinone
segment, and a benzylidene biphenol moiety. The latter
of these gives blepharismins the ability to generate
considerable intramolecular distortion, and is a chal-
lenging issue for synthetic chemists. The most explicit
answer to this problem must be the condensation of
phenols with benzaldehydes. Although several methods
to achieve this type of transformation have been
reported in the literature, most are unsatisfactory with
respect to their generality, selectivity, productivity and
efficiency.6 We expected that the application of a high-
pressure technique would provide a new general alter-
native to more classical methods, since it is well known
that organic reactions with a large molecular contrac-
tion are highly favorable under high pressure.7 We
describe here the realization of this expectation.
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To establish the optimum conditions, the reaction
between 4-t-butylphenol (6) and p-anisaldehyde (7) was
examined under a variety of conditions (Table 1).8 Of
several acids tested, the best results were obtained using
a catalytic amount of trifluoromethanesulfonic acid
(TfOH) as a very strong acid,9 and at 3 kbar pressure
the reaction was dramatically accelerated to give the
adduct 8 in 87% yield (run 4). However, no significant
increase in the product yield was observed at higher
pressures (runs 5 and 6).

The general feasibility of this method is shown in
Scheme 1.10–14 Thus, several reactions with a series of
phenols and aldehydes gave the desired adducts 9–18 in
good yields. For the less-reactive substrates such as
2,4-dimethylphenol, p-chlorobenzaldehyde and p-
nitrobenzaldehyde, rather drastic conditions were nec-
essary to prepare sufficient amounts of the products 10,
14 and 15. We also examined the reaction using
propanal as an aliphatic aldehyde, and in this case a
fairly low yield of the adduct 19 (10%) was observed,
accompanied by a xanthene-type compound 20 (31%).15

Terephthaldicarboxaldehyde also reacted smoothly
with 6.0 equiv. of 2-naphthol to produce tetranaphthol
18 in 85% yield.

With these results in hand, we were able to construct a
key skeleton of blepharismins (Scheme 2). Thus, treat-
ment of naphthol 21 with 7 according to the standard
procedure produced the adduct 22 in 83% yield. Methy-
lation of the two phenol groups followed by debenzyla-
tion under catalytic hydrogenation conditions gave
bisnaphthol 23 in 85% yield. Intramolecular oxidative
biaryl coupling of this sample took place by Koga’s
copper-catalyzed reaction16 to furnish the benzylidene
biphenol derivative 24, which is a key component of
blepharismins, in 73% yield. Interestingly, the spectral
data show that 24 exists mostly as a cyclized hemiacetal
form of 25, implying the spatial proximity of two
phenol functions.17

In conclusion, we have developed a simple and efficient
synthetic method for the high-pressure-promoted con-
densation of phenols with aromatic aldehydes using
TfOH as a strong acid catalyst. Furthermore, the suc-
cessful construction of 24, a key skeleton of blepharis-
mins, demonstrates the potential utility of this
technique to derive blepharismins themselves. Further
studies along these lines are now in progress.

Typical experimental procedure for the preparation of
8: A mixture of 4-t-butylphenol (3b; 750 mg, 5.0
mmol), p-anisaldehyde (7, 136 mg, 1 mmol), and TfOH
(25 mg, 0.16 mmol) in EtOH (1.5 ml) was placed in a
Teflon reaction vessel at 3 kbar and 60°C for 24 h.
After evaporation of the solvent, the crude product was
purified by preparative TLC (hexane/AcOEt=2:1) to
give 8 (362 mg, 87%) as a colorless solid: mp 125.5–
127.0°C (from hexane–CH2Cl2); FTIR (KBr) 3352,
1510 cm−1; 1H NMR (400 MHz, CDCl3) d 1.18 (18H,
s), 3.81 (3H, s), 4.89 (2H, br s), 5.82 (1H, s), 6.76 (2H,
d, J=8.5 Hz), 6.86 (2H, d, J=8.6 Hz), 6.96 (2H, d,
J=2.4 Hz), 7.09 (2H, d, J=8.6 Hz), 7.15 (2H, dd,
J=8.5, 2.4 Hz); 13C NMR (100 MHz, CDCl3) d 31.4
(×6), 34.1 (×2), 44.3, 55.2, 114.0 (×2), 115.7 (×2), 124.7
(×2), 127.2 (×2), 128.3 (×2), 130.2 (×2), 133.4, 143.7
(×2), 151.2 (×2), 158.4.
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Table 1. Acid-catalyzed condensation of 6 with 7 under various conditions

Yield of 8 (%)aPressure (kbar)Catalyst (0.1 equiv.)Run

CH3COOH 0.0011 No reaction
Conc. HCl 0.0012 29b

0.001 46TfOH3
8734 TfOH
8755 TfOH

TfOH 7 866

a Isolated yield.
b 3 equiv. of 6 was used.
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Scheme 1.

Scheme 2.
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